PuzzleSolver/Source/functions/solve/structure.cpp

363 lines
12 KiB
C++
Raw Normal View History

#include "../../header.h"
void status(vector<LogEntry>& log, vector<Part*>& p_Box);
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVector);
2017-12-22 22:55:55 +01:00
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth);
void sort(vector<LogEntry>& log);
void cut(vector<LogEntry>& log, Part* cutID);
float capLogElements(vector<LogEntry>& log);
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector* cqVector);
bool next(vector<LogEntry>& log, vector<Part*>& p_Box,Puzzle& puzzleMat)
{
//last log element is set, create new log element or log not yet started
2017-12-03 20:12:32 +01:00
if(!(log.size()) || log.back().isSet())
{
if(!(p_Box.size())) return false; //puzzle solved
else createNextLogElement(log,p_Box,puzzleMat);
}
//last log element is empty, backtrack
else if(!(log.back().PieceCollector.size())) backtrack(log,p_Box,puzzleMat);
//case last log element has multiple entries
else if(log.back().PieceCollector.size() > 1)
{
2017-12-22 22:55:55 +01:00
//moreLayers is 0, setbest is 1
if (SetBestOrMoreLayersArithmetical(log, &puzzleMat.combinedQualityVector)) setsolution(log, p_Box, puzzleMat);
else solve(log, p_Box, puzzleMat);
}
//case last log exactly one solution
else if(log.back().PieceCollector.size() == 1)
2017-12-03 20:12:32 +01:00
{
if(log.back().hasRandomed())
{
if(log.back().abstractionLevel < 2)//do 2 at least two best abstractions to check if part is okay
{
log.back().advance();
solve(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
}
else
setsolution(log,p_Box,puzzleMat);
2017-11-21 16:05:38 +01:00
}
return true;
}
void createNextLogElement(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
log.emplace_back(LogEntry(coor(0, 0)));
log.back().myCoor = calculateNextCoor(log, p_Box,puzzleMat);
2017-12-22 23:09:23 +01:00
puzzleMat.dp.DestructionOfSurrounding(log.back().myCoor);//calculate dp from surrounding
for(auto it:p_Box)
log.back().PieceCollector.emplace_back(pair<float,Part*>(0,it));
cout << p_Box.size() << endl;
cout << log.back().PieceCollector.size() << endl;
2017-12-22 22:55:55 +01:00
solve(log, p_Box,puzzleMat);
}
coor calculateNextCoor(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//level 1:
//go left to right, then increase current row
2017-12-03 20:12:32 +01:00
if (log.size() == 1)
return {0,0};
2017-12-03 20:12:32 +01:00
unsigned int m= log.rbegin()[1].myCoor.col;
unsigned int n= log.rbegin()[1].myCoor.row;
2017-12-03 20:12:32 +01:00
if(m<puzzleMat.getSizeAsCoor().col-1) m++;
else if(n<puzzleMat.getSizeAsCoor().row-1){ m=0; n++;}
return {m,n};
}
void solve(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
log.back().abstractionLevel = puzzleMat.dp.getNextAbstractionLayer(log.back().myCoor,log.back().abstractionLevel); //sets in abstractionLevel
//status(log,p_Box,puzzleMat);
switch(log.back().abstractionLevel)
{
case 0:
2017-12-22 22:47:14 +01:00
puzzleMat.a1.EvaluateQuality(log.back().myCoor, log.back().PieceCollector);
break;
2017-11-21 15:07:15 +01:00
default:
break;
}
capLogElements(log);
float worth = capLogElements(log);
calculateTrueDestructionPower(log,puzzleMat, worth);
CalculateNewCombinedQuality(log, log.back().PieceCollector, &puzzleMat.combinedQualityVector);
}
//removes from box and makes log "set"
void setsolution(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//advance number of randomed part count
if(log.back().PieceCollector.size()>1) log.back().advanceRandomed();
//remove first element in last logelement from box
for(int i=0;i<p_Box.size();)
if(p_Box[i]==log.back().PieceCollector.begin()->second)//mach ich das richtig so?!
2017-12-03 20:12:32 +01:00
p_Box.erase(p_Box.begin()+i);
else
i++;
2017-12-03 20:12:32 +01:00
//tell log entry that it is set
log.back().Set();
2017-12-03 20:12:32 +01:00
}
bool backtrack(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
//if more pieces possible, take next piece
if((log.back().PieceCollector.size())>1)
{
p_Box.push_back(log.back().PieceCollector.begin()->second);
2017-12-03 20:12:32 +01:00
log.back().PieceCollector.erase(log.back().PieceCollector.begin());
if(log.back().PieceCollector.size()==1)
log.back().decreaseRandomed();
2017-12-03 20:12:32 +01:00
setsolution(log,p_Box,puzzleMat);
return true;
}
//else remove log element and backtrack once more
else
{
puzzleMat.removeConstrains(log.back().myCoor); //this should remove constraints from all layers
if((log.back().PieceCollector.size()))
p_Box.emplace_back(log.back().PieceCollector.begin()->second);
log.pop_back();
backtrack(log,p_Box,puzzleMat);
}
}
void status(vector<LogEntry>& log, vector<Part*>& p_Box, Puzzle& puzzleMat)
{
cout << "----------------------------" << endl;
cout << "status:" << endl;
cout << "hasrandomed: " << log[0].hasRandomed() << endl;
for(int i=0;i<log.size();i++)
{
cout << "log #" << i << ":" << endl;
cout << "piecenr " << log[i].PieceCollector.size() << endl;
if(log[i].isSet())
cout << "isset: 1" << endl;
else
cout << "isset: 0" << endl;
cout << "col: " << log[i].myCoor.col<< " row: " << log[i].myCoor.row << endl;
}
cout << endl;
cout << "Box:" << endl;
cout << "size: " << p_Box.size() << endl;
cout << "Puzzle:" << endl;
puzzleMat.printPuzzle();
cout << "----------------------------" << endl;
}
//this is addon stuff that should later all be extracted into a sererate cpp as it is not core dispatcher functionality
2017-12-22 22:55:55 +01:00
void calculateTrueDestructionPower(vector<LogEntry>& log, Puzzle& puzzleMat, float Layerworth) {
float destructionPower = sqrt(
Layerworth * puzzleMat.dp.m_constraintMatrix[0][0].SpeedTable[log.back().abstractionLevel]);
puzzleMat.dp.setDestructionPower(log.back().myCoor, log.back().abstractionLevel, destructionPower);
2017-12-22 22:55:55 +01:00
}
// PART RAUER_WEIDINGER
float capLogElements(vector<LogEntry>& log)
2017-12-22 22:55:55 +01:00
{
// Till Now only ground structure -> incorrect variable ans vector names
double limit = 0.6;
double diff = 0;
double maxdiff = 0;
int vectorsizeBefore = 0;
int vectorsizeAfter = 0;
double destroyed = 0; // destroyed parts in %
double worth = 0;
vectorsizeBefore = log.back().PieceCollector.size();
sort(log); // Sort the vector after probabilities
qualityVector::const_iterator idxcut =log.back().PieceCollector.begin();
for(;idxcut !=log.back().PieceCollector.end();idxcut++)
if(idxcut->first < limit)
2017-12-22 22:55:55 +01:00
break;
auto newidxcut = idxcut;
2017-12-22 22:55:55 +01:00
while(idxcut != log.back().PieceCollector.end())
{
diff = idxcut->second - (++idxcut)->second;
2017-12-22 22:55:55 +01:00
if(diff > maxdiff)
{
maxdiff = diff;
newidxcut = idxcut;
2017-12-22 22:55:55 +01:00
}
}
cut(log,newidxcut->second);
2017-12-22 22:55:55 +01:00
vectorsizeAfter = log.back().PieceCollector.size();
2017-12-22 22:55:55 +01:00
destroyed = (vectorsizeBefore - vectorsizeAfter) / vectorsizeBefore;
return (float)sqrt(destroyed*maxdiff);
2017-12-22 22:55:55 +01:00
}
void sort(vector<LogEntry>& log)
{
//this does all the sorting that needs to happen
//saddly this is a false statement
//the monkey desperately tried to hold on to the flying dorm room.
}
qualityVector::iterator FindPartInLog(vector<LogEntry>& log, Part* wishedPartPointer)
{
qualityVector::iterator partOnPositionIterator = log.back().PieceCollector.begin();
while (partOnPositionIterator != log.back().PieceCollector.end())
{
if(partOnPositionIterator.base()->second == wishedPartPointer)
{
break;
}
else
{
partOnPositionIterator++;
}
}
return partOnPositionIterator;
}
void cut(vector<LogEntry>& log, Part* cutID)
{
auto it = FindPartInLog(log, cutID);
while(it != log.back().PieceCollector.end())
log.back().PieceCollector.erase(it++);
}
2017-12-22 22:55:55 +01:00
// -------------------- Part David: SetBest and CalculateCombinedQuality --------------------
// pruefen, ob mehr als X combinedQualities ueber dem Grenzwert sind. Wenn nur noch Y Pieces ueber bleiben, dann setBest!
// geeignete Threshold values muessen noch getestet werden
bool SetBestOrMoreLayersArithmetical(vector<LogEntry>& log, qualityVector* cqVector)
2017-12-22 22:55:55 +01:00
{
float threshold = 1.0, tempBest = 0.0;
unsigned int countHigherThreshold = 0;
2017-12-22 22:55:55 +01:00
if(cqVector->empty())
2017-12-22 22:55:55 +01:00
{
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return false; // Warning: can only return true or false. What return for error?
2017-12-22 22:55:55 +01:00
}
else
{
switch(log.back().abstractionLevel)
{
case 1: threshold = 0.90; break;
case 2: threshold = 0.80; break;
case 3: threshold = 0.75; break;
case 4: threshold = 0.66; break;
case 5: threshold = 0.60; break;
default: threshold = 0.5; break;
}
// check Quality of current Puzzle Piece in combinedQualityVector with Threshold value
for (qualityVector::iterator it = cqVector->begin(); it != cqVector->end(); it++)
{
if ((cqVector->back().first / log.back().abstractionLevel) >= threshold) // const threshold values
{
// count how many Pieces are greater than the threshold value
countHigherThreshold++;
}
else
{
if ((cqVector->back().first / log.back().abstractionLevel) > tempBest)
{
tempBest = cqVector->back().first; // could be used, for additional constraints
}
}
}
2017-12-22 22:55:55 +01:00
// return true if only one piece is left
if (1 == countHigherThreshold)
{
return true;
}
else
{
return false;
}
}
2017-12-22 22:55:55 +01:00
}
// jede Quality vom Piececollector zu einer combinedQuality aufsummieren (von jedem bereits verwendetem Layer)
// Achtung: Es muss noch der Mittelwert gebildet werden => SetBestOrMoreLayersArithmetical
void CalculateNewCombinedQuality(vector<LogEntry>& log, qualityVector& qVector, qualityVector* cqVector)
2017-12-22 22:55:55 +01:00
{
bool summarizedVectors = false;
int countSummarizedVectors = 0;
2017-12-22 22:55:55 +01:00
// check if both qualityVectors are not empty
if(qVector.empty())
{
cerr << "qualityVector is empty." << endl; // should not be empty => backtrack?
return;
}
else if(cqVector->empty())
2017-12-22 22:55:55 +01:00
{
cerr << "combinedQualityVector is empty." << endl; // should not be empty => backtrack?
return;
}
else
{
for (unsigned int i = 0; i < cqVector->size(); i++)
2017-12-22 22:55:55 +01:00
{
summarizedVectors = false;
for (unsigned int j = 0; j < qVector.size(); j++)
2017-12-22 22:55:55 +01:00
{
// search same PuzzlePart of qualityVector and combinedQualityVector
if (&cqVector->at(i).second == &qVector.at(j).second)
{
// sum Quality of PieceCollector (qualityVector) to combinedQualityVector
cqVector->at(j).first += qVector.at(i).first;
countSummarizedVectors++;
summarizedVectors = true;
continue; // skip remaining for loop => save time!
}
2017-12-22 22:55:55 +01:00
}
// remove element at poisition X in combinedQualityVector, because it was not summarized
if (!summarizedVectors)
2017-12-22 22:55:55 +01:00
{
// inefficient way to delete element X
//cqVector->erase(cqVector->begin()+i);
// efficient way, but no sorted cqVector => wayne
swap(cqVector->at(i), cqVector->back());
cqVector->pop_back();
2017-12-22 22:55:55 +01:00
}
}
// cqVector should have the same size now as newest qVector
if (cqVector->size() != qVector.size())
2017-12-22 22:55:55 +01:00
{
cerr << "Size of combinedQualityVector doenst match with size of qualityVector!" << endl;
cout << "Size of combinedQualityVector: " << cqVector->size() << endl;
cout << "Size of qualityVector: " << qVector.size() << endl;
cout << "Size of countSummarizedVectors: " << countSummarizedVectors << endl;
2017-12-22 22:55:55 +01:00
}
}
}