publishes bounding boxes
- bounding boxes found in image over 0.1 score are published as a Detection2D array - post-processing moved to seperate thread
This commit is contained in:
parent
810f412821
commit
d7ab431fd6
@ -10,7 +10,7 @@ class MinimalPublisher(Node):
|
||||
def __init__(self):
|
||||
super().__init__('minimal_publisher')
|
||||
self.publisher_ = self.create_publisher(Image, '/camera/color/image_raw', 10)
|
||||
timer_period = 0.5 # seconds
|
||||
timer_period = 1/30 # seconds
|
||||
self.timer = self.create_timer(timer_period, self.timer_callback)
|
||||
self.i = 0
|
||||
self.im_list = []
|
||||
|
@ -24,8 +24,9 @@ from tensorflow.image import combined_non_max_suppression
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
|
||||
from std_msgs.msg import String as StringMsg
|
||||
from sensor_msgs.msg import Image as ImageMsg
|
||||
from vision_msgs.msg import Detection2DArray, Detection2D, BoundingBox2D, ObjectHypothesisWithPose
|
||||
from geometry_msgs.msg import Pose2D
|
||||
|
||||
from cv_bridge import CvBridge
|
||||
|
||||
@ -369,7 +370,7 @@ class HailoNode(Node):
|
||||
def __init__(self):
|
||||
super().__init__('hailo_image_subscriber')
|
||||
self.sub = self.create_subscription(ImageMsg, '/camera/color/image_raw', self.image_callback, 10)
|
||||
self.pub = self.create_publisher(ImageMsg, '/hailo_bounding_boxes', 10)
|
||||
self.pub = self.create_publisher(Detection2DArray, '/hailo_bounding_boxes', 10)
|
||||
|
||||
self.bridge = CvBridge()
|
||||
|
||||
@ -383,7 +384,6 @@ class HailoNode(Node):
|
||||
self.hailo.start_hailo_thread()
|
||||
|
||||
def image_callback(self, data):
|
||||
print("Received an image!")
|
||||
img = self.convert(data)
|
||||
self.image_infer(img)
|
||||
|
||||
@ -396,19 +396,33 @@ class HailoNode(Node):
|
||||
while(out == None):
|
||||
time.sleep(0.0001)
|
||||
out = self.hailo.hailo_output()
|
||||
|
||||
Thread(target=self._thread_postprocessing, args=[out]).start()
|
||||
|
||||
|
||||
def _thread_postprocessing(self, out):
|
||||
logits = self.processor.postprocessing(out)
|
||||
|
||||
labels = get_labels("data/daria_labels.json")
|
||||
|
||||
detection_array = Detection2DArray()
|
||||
|
||||
for bb in range(len(logits['detection_boxes'].numpy()[0])):
|
||||
boxes = logits['detection_boxes'].numpy()[0][bb]
|
||||
classes = logits['detection_classes'][0][bb]
|
||||
scores = logits['detection_scores'].numpy()[0][bb]
|
||||
if(scores > 0.01):
|
||||
print(boxes)
|
||||
print(labels[classes])
|
||||
print(scores)
|
||||
print("-----")
|
||||
bb = BoundingBox2D()
|
||||
bb.center = Pose2D()
|
||||
bb.center.x = float(boxes[0])
|
||||
bb.center.y = float(boxes[1])
|
||||
bb.size_x = float(boxes[2])
|
||||
bb.size_y = float(boxes[3])
|
||||
oh = ObjectHypothesisWithPose(id=str(labels[classes]), score=float(scores))
|
||||
detection = Detection2D(results=[oh], bbox=bb)
|
||||
detection_array.detections.append(detection)
|
||||
|
||||
self.pub.publish(detection_array)
|
||||
|
||||
# convert ros image to PIL image
|
||||
def convert(self, ros_image):
|
||||
|
Loading…
x
Reference in New Issue
Block a user